Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 885029, 2022.
Article in English | MEDLINE | ID: covidwho-2039674

ABSTRACT

Periodontitis was an inflammatory disease associated with a dysbiosis of the oral flora characterized by a chronic sustained inflammation inducing the resorption of alveolar bone and leading to tooth loss. Type 2 diabetes mellitus (T2D) was a metabolic disease caused by impaired insulin action. The oral microbiome played a crucial role in modulating both the innate and adaptive immune system during the trigger and exacerbation of periodontitis and T2D. The bidirectional relationship of T2D and periodontitis had been the focus of intensive research, but those were not well explored. In this commentary, an in-depth analysis of the changes of microbiome and bacterial metabolites in periodontitis with or without diabetes was described. The promotion of periodontitis to T2D might involve inflammatory factors/receptors, oxidative stress, microRNA and so on. The effect of diabetes on periodontitis might involve adipose factor pathway, AGE/RAGE and RANK/RANKL pathway etc. Generally, periodontitis and diabetes are closely related to the microecological-epithelial interaction, soft tissue degradation, bone coupling disorder, immune regulation and gene transcription. The viruses, including HBV, HCV, HSV-1, Coronavirus, HCMV, EBV, HIV, phageome and so on, played an important role in the development of T2D and periodontitis. An in-depth understanding of the relationship between microbiome and host was of great significance to clarify the bidirectional mechanisms, suggesting that the periodontitis or T2D remission will have a positive impact on the other.


Subject(s)
Diabetes Mellitus, Type 2 , Insulins , MicroRNAs , Microbiota , Periodontitis , Viruses , Bacteria/genetics , Humans , Inflammation/complications , Microbiota/genetics , Viruses/genetics
2.
J Appl Microbiol ; 132(3): 2421-2430, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1488216

ABSTRACT

AIMS: COVID-19 pandemic caused by SARS-CoV-2 has become a public health crisis worldwide. In this study, we aimed at demonstrating the neutralizing potential of the IgY produced after immunizing chicken with a recombinant SARS-CoV-2 spike protein S1 subunit. METHODS AND RESULTS: E. coli BL21 carrying plasmid pET28a-S1 was induced with IPTG for the expression of SARS-CoV-2 S1 protein. The recombinant His-tagged S1 was purified and verified by SDS-PAGE, Western blot and biolayer interferometry (BLI) assay. Then S1 protein emulsified with Freund's adjuvant was used to immunize layer chickens. Specific IgY against S1 (S1-IgY) produced from egg yolks of these chickens exhibited a high titer (1:25,600) and a strong binding affinity to S1 (KD  = 318 nmol L-1 ). The neutralizing ability of S1-IgY was quantified by a SARS-CoV-2 pseudotyped virus-based neutralization assay with an IC50  value of 0.99 mg ml-1 . In addition, S1-IgY exhibited a strong ability in blocking the binding of SARS-CoV-2 S1 to hACE2, and it could partially compete with hACE2 for the binding sites on S1 by BLI assays. CONCLUSIONS: We demonstrated here that after immunization of chickens with our recombinant S1 protein, IgY neutralizing antibodies were generated against the SARS-CoV-2 spike protein S1 subunit; therefore, showing the potential use of IgY to block the entry of this virus. SIGNIFICANCE AND IMPACT OF THE STUDY: IgY targeting S1 subunit of SARS-CoV-2 could be a promising candidate for pre- and post-exposure prophylaxis or treatment of COVID-19. Administration of IgY-based oral preparation, oral or nasal spray may have profound implications for blocking SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/pharmacology , Immunoglobulins/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects , Animals , COVID-19 , Chickens , Egg Yolk/immunology , Humans , Pandemics
3.
Mol Oral Microbiol ; 35(4): 141-145, 2020 08.
Article in English | MEDLINE | ID: covidwho-188218

ABSTRACT

SARS-CoV-2, a novel emerging coronavirus, has caused severe disease (COVID-19), and rapidly spread worldwide since the beginning of 2020. SARS-CoV-2 mainly spreads by coughing, sneezing, droplet inhalation, and contact. SARS-CoV-2 has been detected in saliva samples, making saliva a potential transmission route for COVID-19. The participants in dental practice confront a particular risk of SARS-CoV-2 infection due to close contact with the patients and potential exposure to saliva-contaminated droplets and aerosols generated during dental procedures. In addition, saliva-contaminated surfaces could lead to potential cross-infection. Hence, the control of saliva-related transmission in the dental clinic is critical, particularly in the epidemic period of COVID-19. Based on our experience of the COVID-19 epidemic, some protective measures that can help reduce the risk of saliva-related transmission are suggested, in order to avoid the potential spread of SARS-CoV-2 among patients, visitors, and dental practitioners.


Subject(s)
Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Saliva/virology , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Dentists , Humans , Occupational Exposure , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL